BAM-GGR 012

Leitlinie zur Berechnung der Deckelsysteme und Lastanschlagsysteme von Transportbehältern für radioaktive Stoffe

Ausgabe 2012-11
Inhaltsverzeichnis

1 Einleitung
- 1.1 Anwendung und Inhalt der Leitlinie ... 6
- 1.2 Rechtsgrundlagen ... 7
- 1.3 Andere Normen und Richtlinien .. 8

2 Lastanschlagsysteme
- 2.1 Berechnungsverfahren und Modellbildung 10
- 2.2 Lastannahmen .. 10
 - 2.2.1 Montage .. 10
 - 2.2.2 Allgemeiner Spannungsnachweis .. 11
 - 2.2.3 Betriebsfestigkeitsnachweis .. 12
- 2.3 Werkstoffkennwerte ... 14
 - 2.3.1 Mechanische Kennwerte ... 14
 - 2.3.2 Thermische Kennwerte .. 15
 - 2.3.3 Tribologische Kennwerte ... 15
- 2.4 Ermitteln der wirksamen Beanspruchungen und deren Bewertung .. 16
 - 2.4.1 Allgemeine Festigkeit der Lastanschlagpunkte 16
 - 2.4.2 Flächenpressung zwischen Tragzapfen und Lagerschale 17
 - 2.4.3 Betriebsfestigkeit der Lastanschlagpunkte 17
 - 2.4.4 Allgemeine Festigkeit der Schrauben von Lastanschlagsystemen .. 18
 - 2.4.5 Flächenpressung in der Schraubenverbindung 20
 - 2.4.6 Einschraubtiefe .. 21
 - 2.4.7 Betriebsfestigkeit der Schrauben von Lastanschlagsystemen 21

3 Deckelsysteme
- 3.1 Berechnungsverfahren und Modellbildung 23
- 3.2 Lastannahmen .. 24
 - 3.2.1 Montage .. 24
 - 3.2.2 Gefahrgutrechtliche Beförderungsbedingungen 24
- 3.3 Werkstoffkennwerte ... 25
 - 3.3.1 Mechanische Kennwerte ... 25
 - 3.3.2 Thermische Kennwerte .. 26
 - 3.3.3 Tribologische Kennwerte ... 26
 - 3.3.4 Ummantelte Federkern-Metalldichtungen 26
 - 3.3.5 Elastomerdichtungen .. 27
- 3.4 Ermitteln der wirksamen Beanspruchungen und deren Bewertung .. 28
 - 3.4.1 Festigkeit der Deckelschrauben .. 28
 - 3.4.2 Flächenpressung und Einschraubtiefe 29
 - 3.4.3 Verpressen der Dichtungen ... 29
 - 3.4.4 Festigkeit der Deckel .. 31
 - 3.4.5 Verrutschen der Deckel .. 31
 - 3.4.6 Weitere Nachweise ... 32
Formelzeichenverzeichnis 33
Quellenverzeichnis 35
Abbildungsverzeichnis

2.1 Ermittlung der Normalkraft und der Momente an der Schraube 19
3.1 Dichtungskennlinie, schematische Darstellung, z. T. nach [20] 27
Tabellenverzeichnis

- 2.1 Lastbeiwerte .. 11
- 2.2 Lastbeiwerte für ein Lastarbeitsspiel während der Kranhandhabung 13
- 2.3 Lastbeiwerte für den Traglastnachweis 16
- 2.4 Sicherheitsbeiwerte für den Betriebsfestigkeitsnachweis der LAP 18
- 2.5 Kriterien für die Spannungsbewertung der Schrauben von LAS 20
- 2.6 Sicherheitsbeiwerte für Betriebsfestigkeitsnachweis der Schrauben von LAS . 22
- 3.1 Kriterien für die Spannungsbewertung der Deckelschrauben 29
1 Einleitung

1.1 Anwendung und Inhalt der Leitlinie

Ein Lastanschlagssystem besteht beispielsweise aus einem Lastanschlagpunkt (Tragzapfen, Greifpilz o.a.) und der zugehörigen Verschraubung. Ein Deckelsystem umfasst neben den eigentlichen Deckeln (Primärdeckel, Sekundärdeckel, Kleindeckel, etc.) die dazu gehörenden Verschraubungen und Dichtungen.

Grundlage für die Betrachtung der Deckelsysteme sind die aus dem Gefahrgutrecht resultierenden Anforderungen für Routine-, normale und Unfall-Beförderungsbedingungen von Versandstücken für radioaktive Stoffe. In dieser Leitlinie werden zusätzlich die bei der Montage der Schraubenverbindungen zu beachtenden Kriterien erläutert.

Bezüglich der Lastanschlagssysteme werden in dieser Leitlinie neben dem Nachweis für den Montagezustand der Verschraubungen auch die Anforderungen an die statische Festigkeit und die Ermüdungsfestigkeit der Systemkomponenten behandelt. Die Anforderungen beziehen sich auf den Montagezustand der Verschraubungen sowie die Belastungen der Lastanschlagssysteme sowohl bei der Kranhandhabung als auch beim Transport auf öffentlichen Verkehrswegen (Routine-Beförderungsbedingungen [24]). Bei den Kranhandhabungen wird zwischen Handhabungen innerhalb und außerhalb des Geltungsbereiches der sicherheitstechnischen Regeln des kerntechnischen Auschusses (KTA) unterschieden.

Die in dieser Leitlinie angegebenen Sicherheitsfaktoren setzen eine realitätsnahe bzw. konservative Modellbildung voraus. Dafür verwendete Lastannahmen, Werkstoffkennwerte und...

1.2 Rechtsgrundlagen

Die Basis der anzuwendenden gefahrgutrechtlichen Regelwerke für den Transport radioaktiver Stoffe sind die Empfehlungen der Internationalen Atomenergieorganisation (IAEA) [24]. Die genannten Empfehlungen sind für die verschiedenen Verkehrsträger Straße, Schiene, Wasser und Luft über die Gefahrgutvorschriften in verbindliches nationales und internationales Recht überführt worden. Die gefahrgutrechtlichen Regelwerke zielen bei der Auslegung von Transportbehältern für radioaktive Stoffe vor allem auf die Erfüllung folgender Funktionen ab:

- Dichte Umschließung des radioaktiven Inhalts (sowohl Integrität als auch Dichtheit)
- Abschirmung der ionisierenden Strahlung des Inhalts
- Gewährleistung der Unterkritikalität des Inhalts (bei spaltbaren Stoffen)
- Schutz vor Schäden durch Wärmeentwicklung.

Die Deckelsysteme der Transportbehälter müssen neben der Abschirmung auch den sicheren Einschluss des Inhalts mit spezifizierten Anforderungen an die Dichtheit der Behälter gewährleisten. Lastanschlagsysteme sollen die sichere Handhabung der Behälter und ihrer Bauteile, z. B. Deckel, und ggf. die sichere Arretierung der Behälter auf dem Transportmittel gewährleisten.

Als Nachweisverfahren werden in den gefahrgutrechtlichen Vorschriften experimentelle Prüfungen mit Prototypen bzw. Serienmustern, Bezugnahme auf frühere Versuche mit bauartähnlichen Behältern, Versuche mit maßstäblichen Modellen, Rechnungen oder begründete
Annahmen sowie eine Kombination aus mehreren der genannten Möglichkeiten zugelassen [24]. Die vorliegende Leitlinie bezieht sich auf spezifische Methoden der rechnerischen Nachweisführung auf der Basis einer konservativen oder experimentellen Absicherung der zugrunde liegenden Parameter und Annahmen.

1.3 Andere Normen und Richtlinien

2 Lastanschlagsysteme

Das Lastanschlagsystem (LAS) dient der Handhabung des Behälters und seiner Bauteile sowie ggf. der Arretierung des Behälters auf dem Transportmittel. In der vorliegenden Leitlinie werden geschraubte LAS behandelt.

Die Auslegung von LAS muss daher auf der einen Seite bezüglich der Umladungen und der Transportbelastungen gefahrgutrechtliche Anforderungen erfüllen, auf der anderen Seite auch die für die Handhabungen innerhalb des Geltungsbereichs der KTA 3905 festgelegten Anforderungen. In der Auslegung für das jeweilige LAS müssen diese Anforderungen überlagert betrachtet werden. Im Einzelnen sind ausgehend von einem Nachweis der sachgemäßen Montage ein allgemeiner Spannungs- und ein Ermüdungsfestigkeitsnachweis für das LAS zu führen, wobei für die Lastannahmen sowohl gefahrgutrechtliche Anforderungen als auch Anforderungen der KTA 3905 zu berücksichtigen sind. Darüber hinaus muss die Auslegung des LAS ein selbsttätiges Lösen der Verschraubung unter Betriebsbeanspruchungen mit einer ausreichenden Sicherheit ausschließen.

Die hier vorgestellte Nachweisführung basiert auf der Bewertung von örtlichen Spannungen aus einer Finite Elemente (FE) Analyse und ist eine Erweiterung des Nennspannungskonzeptes der KTA 3905.

Wenn LAP an Deckeln für die Handhabung des Behälters oder für die Arretierung des Behälters während des Transports verwendet werden, müssen auch die Auswirkungen der zusätzlichen Belastungen auf die Deckelschrauben und das Dichtsystem betrachtet werden. Dazu sind die entsprechenden Vorgaben in Kapitel 3 dieser Leitlinie heranzuziehen.
2.1 Berechnungsverfahren und Modellbildung

Falls zur anforderungsgerechten Auslegung des LAS die Erfassung der Wechselwirkungen zwischen seinen einzelnen Bauteilen notwendig ist, erfordert diese Systembetrachtung in der Regel eine Analyse mit der FE-Methode. Im Fall geschraubter Tragzapfensysteme sollte die Modellierung zumindest die Tragzapfen, die Tragzapfenschrauben und die verschraubten Teile umfassen. Die verschraubten Teile können auf die Einflusszone des LAS reduziert werden: Bereiche, die nachweislich von den Vorgängen am LAS nicht betroffen sind, brauchen nicht modelliert zu werden. Die Interaktion zwischen Lagerschale und Tragzapfen ist entweder durch eine direkte Modellierung der Lagerschale oder durch ausreichend konservative Annahmen hinsichtlich des Umschlingungswinkels sowie der Verteilung der Kraft über die Kontaktfläche zu berücksichtigen.

\[
D = \sum_{i} \frac{n_i}{N_i}
\]

(2.1)

Die einzelnen Spannungskollektive werden durch Treppenkurven mit der Stufenhäufigkeit \(h_i\) und der jeweiligen Stufenspannung \(\sigma_{ai}\) angenähert. Es gilt \(n_i = K \cdot h_i\) nach \(K\) Kollektivdurchgängen. Die Anzahl der ertragbaren Spiele \(N_i\) in der Kollektivstufe \(i\) ist eine Funktion der jeweiligen Ausschlagsspannung \(\sigma_{ai}\) und der jeweiligen Mittelspannung \(\sigma_{mi}\) und wird mit Hilfe der Zeitfestigkeitsgeraden der zugehörigen Wöhlerkurve berechnet. Damit erhält man die Gesamtschädigung \(D\) des Bauteils.

Wenn LAP innerhalb des Geltungsbereichs der KTA 3905 betrieben werden, muss die elementare Miner-Regel (lineare Schadensakkumulation bei stetig verlaufender Wöhlerlinie in doppeltlogarithmischer Darstellung) angewendet werden [27]. Bei gleicher ertragbarer Minersumme ergibt sich nach der elementaren Miner-Regel eine konservative Bewertung [21]. Dieses Verfahren ist auch zu empfehlen, sofern keine Anforderungen des KTA zwingend zu erfüllen sind.

2.2 Lastannahmen

2.2.1 Montage

Für das Ermitteln der Vorspannung von Schrauben eines LAS ist die VDI 2230 [31] anzuwenden. Dabei sollte die mögliche Schwankungsbreite der Vorspannung entweder durch die Festlegung eines geeigneten Anziehfaktors nach [31] oder direkt aus der Drehmomenttoleranz des Anziehverfahrens in Verbindung mit der Schwankungsbreite der Reibungsbeiwerte für das verwendete Schmiermittel bestimmt werden: Das maximale Anziehmoment (Nennanziehmoment plus der Drehmomenttoleranz) gekoppelt mit dem

minimalen Reibungsbeiwert ist zur Bestimmung der maximalen Schraubenvorspannkraft anzusetzen, während das minimale Anziehmoment (Nennanziehmoment abzüglich der Drehmomenttoleranz des Anziehverfahrens) gekoppelt mit dem maximalen Reibungsbeiwerten für die minimale Schraubenvorspannkraft zu berücksichtigen ist.\(^2\) Zusätzlich sind bei Definition der minimalen Vorspannkraft die Setzeffekte in der Verbindung sowie die mögliche Reduzierung infolge der Temperaturänderungen einzubeziehen. Ein möglicher temperaturabhängiger Zuwachs der maximalen Vorspannung ist ebenfalls zu betrachten. Dabei sind die Temperaturen gemäß den gefahrgutrechtlichen Anforderungen zu untersuchen. Der Temperaturbereich kann sich von \(-40^\circ\text{C}\) \(^{[24]}\), §637 bis zur höchsten zu unterstellenden Betriebstemperatur erstrecken. Die erhaltenen Vorspankräfte sollten nachfolgend bei den Lastannahmen u. a. in den FE-Analysen des LAS Berücksichtigung finden. Bei einer geeigneten Modellierung (vor allem hinsichtlich der Vorspannkraft) können die temperaturbedingten Effekte direkt in diese Analyse integriert werden.

2.2.2 Allgemeiner Spannungsnachweis

Zur Bestimmung der für den allgemeinen Spannungsnachweis maßgebenden Last muss eine Beschreibung der Belastung vorliegen, die die verschiedenen Transport- und Handhabungssituationen des Behälters bzw. des betreffenden Bauteils abdeckt. Dabei sind beispielsweise auch zusätzliche Belastungen bei Kranhandhabung in Kernkraftwerken durch eine Flutung des Behälters zu berücksichtigen (Nassbeladung). Unterschiedliche Belastungen können jedoch auch aus einer Veränderung des Behältereigengewichts (Handhabung ohne Stoßdämpfer, Teilbeladungen mit radioaktivem Inventar u. a.) resultieren. Die auf diese Weise ermittelte Last ist bei Kranhandhabung mit einem Hublastbeiwert zu multiplizieren. Der Hublastbeiwert ist abhängig von der Einstufung des Handhabungsbereichs. So können im Geltungsbereich der KTA 3905 spezielle Hublastbeiwerte (erhöhte und zusätzliche Anforderungen) gelten, die zum einen zusätzliche Sicherheitsfaktoren beinhalten und zum anderen höhere Anforderungen an Krananlagen in diesem Bereich berücksichtigen \(^{[27]}\). Wenn die LAP nicht nur für die Kranhandhabung sondern auch für den Lastanschlag auf dem Transportmittel verwendet werden, ist auch für den Transport auf öffentlichen Verkehrswegen ein geeigneter Lastbeiwert zu definieren. Die entsprechenden Lastbeiwerte sind in der Tabelle 2.1 zusammengefasst. Der angegebene Hublastbeiwert von 1,45 für die allgemeinen Anforderungen an die Kranhandhabung ist für Kräne der Hubklassen H1 bis

<table>
<thead>
<tr>
<th>Verwendungsbereich</th>
<th>Lastbeiwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erhöhte Anforderungen nach KTA 3905 (^{[27]})</td>
<td>1,8</td>
</tr>
<tr>
<td>Zusätzliche Anforderungen nach KTA 3905 (^{[27]})</td>
<td>1,35</td>
</tr>
<tr>
<td>Allg. Anforderungen an die Kranhandhabung(^3)</td>
<td>1,45</td>
</tr>
<tr>
<td>Transport auf öffentlichen Verkehrswegen(^4)</td>
<td>2,0</td>
</tr>
</tbody>
</table>

Tabelle 2.1: Lastbeiwerte

\(^2\)Die hier am Beispiel des drehmomentgesteuerten Verfahrens gezeigte Ermittlung der Schwankungsbreite der Schraubenvorspannkraft ist im Falle eines alternativen Anziehverfahrens sinngemäß anzuwenden.

\(^3\)Umfasst auch Kranhandhabungen während des Transports auf öffentlichen Verkehrswegen, z. B. Umladungen.

\(^4\)Umfasst Belastungen während des Transports auf öffentlichen Verkehrswegen. Kranhandhabungen sind nicht eingeschlossen.

2.2.3 Betriebsfestigkeitsnachweis

Kranhandhabung

5Für H4 entspricht der Hublastbeiwert von 1,45 einer Hubgeschwindigkeit von 5,5 m/min [15], Tabelle 2, Zeile 3. Für höhere Hubgeschwindigkeiten ist eine Anpassung des Hublastbeiwertes erforderlich.
7Bei den Schrauben, die nach ihrer Demontage wieder remontiert werden, gelten ergänzend die Bestimmungen im Abschnitt 5.1.2 (4) von [27].
Unterspannung gleich der Vorspannung (zugschwellendes Spannungskollektiv).8

Im Sinne dieser Leitlinie ist entsprechend [27] ein Betriebsfestigkeitsnachweis nach mehr als 200 (Hubwerke mit Feinhub) bzw. 100 (ohne Feinhub) Lastarbeitsspielen zu führen.9

Die Tabelle 2.2 zeigt die für die Ermittlung der Spannungskollektive zu verwendenden Lastbeiwerte, mit denen die nach den Vorgaben im Abschnitt 2.2.2 dieser Leitlinie ermittelte Last zu multiplizieren ist. Die Lastkollektive gemäß Tabelle 2.2 berücksichtigen konservativ die

\begin{table}[h!]
\centering
\begin{tabular}{llll}
\hline
Kollektivstufe & I & II \\
\hline
Anzahl der Spannungsspiele & 1 & 99 bzw. 199 \\
\hline
Verwendungsbereich & & & \\
\hline
Erhöhte Anforderungen nach KTA 3905 [27] & 0.1, 45 & 0.55 \ldots 1,45 \\
Zusätzliche Anforderungen nach KTA 3905 [27] & 0.1, 35 & 0.65 \ldots 1,35 \\
Allg. Anforderungen an die Kranhandhabung & 0.1, 45 & 0.55 \ldots 1,45 \\
\hline
\end{tabular}
\caption{Tabelle 2.2: Lastbeiwerte für ein Lastarbeitsspiel während der Kranhandhabung}
\end{table}

Ergebnisse von eigenen Untersuchungen der BAM (z. B. [3]) sowie die aus der Zulassungspraxis bekannten Erfahrungswerte. Entsprechend dem Abschnitt 5.1.3 (4) von [27] ist die Verwendung solcher Kollektive im Geltungsbereich der KTA 3905 zulässig. Die zusätzlichen Sicherheitsfaktoren, mit denen nach Abschnitt 5.3.1.1 (3) bzw. 5.3.2.1 (3) von [27] die gemessenen Hublastbeiwerte zu multiplizieren sind, werden durch die Lastfaktoren in Tabelle 2.2 ebenfalls erfasst. Für erhöhte Anforderungen nach Abschnitt 4.3 von [27] ist lastseitig noch ein zusätzlicher Redundanzfaktor von 1,25 anzusetzen, falls bei Versagen des LAS kein Bauteil verfügbar ist, das die vorgesehene Funktion (sicheres Halten der Last) erfüllen kann. Dies ist beispielsweise beim Anheben eines Behälters an zwei deckelseitig vorhandenen Tragzapfen der Fall. Bei Verwendung der Lastbeiwerte nach Tabelle 2.2 ist, falls erforderlich, der Redundanzfaktor bei der Spannungsbewertung als zusätzlicher Sicherheitsfaktor zu berücksichtigen.

Transport auf öffentlichen Verkehrswegen

Da es nicht möglich ist, allgemein gültige Spannungskollektive für den Transport auf öffentlichen Verkehrswegen zu definieren, sind diese sowohl auf der Grundlage der beantragten Verkehrsträger (Straße, Schiene, Wasser oder Luft) als auch der Länge und Anzahl der

9Bei den Schrauben, die nach ihrer Demontage wieder remontiert werden, gelten ergänzend die Bestimmungen im Abschnitt 5.1.2 (4) von [27]. Vgl. 7
unterstellten Transporte festzulegen. Zur Einhaltung der Festlegungen sind entsprechende Regelungen in die Benutzungsanweisung des Versandstücks aufzunehmen. Falls Transporte unter Bedingungen durchgeführt werden, die durch die Sicherheitsnachweise nicht abgedeckt sind, sind neue bzw. zusätzliche Betriebsfestigkeitsnachweise zu erstellen.

Für die Transportkollektive kann neben experimentellen Nachweisen auch auf veröffentlichte Messungen zurückgegriffen werden [6, 16, 29, 30]. Dabei können beispielsweise die Übertragung auf andere Bauarten oder Transportstrecken sowie die Berücksichtigung von Messfehlern die Verwendung zusätzlicher Sicherheitsfaktoren beim Betriebsfestigkeitsnachweis erforderlich machen.

2.3 Werkstoffkennwerte

Für die Betrachtung des Montagezustands können die Werkstoffkennwerte bei Raumtemperatur angesetzt werden, z. B. $R_{p0.2}(T_0)$. Unter Betriebsbedingungen ist es im Allgemeinen konservativ, die bei der thermischen Analyse ermittelte maximale Betriebstemperatur T_{max} als Grundlage zu verwenden, z. B. $R_{p0.2}(T_{max})$.

2.3.1 Mechanische Kennwerte

E-Modul, Streckgrenze und Zugfestigkeit

Für die Nachweisführung sowohl des LAP als auch der Schrauben ist die Streckgrenze10 bei maximaler Betriebstemperatur $R_{p0.2}(T_{max})$ entscheidend. Sie ist für beide Bauteile zu definieren. Die Zugfestigkeiten des jeweiligen Schraubenwerkstoffs (Bolzengewinde) $R_{mB}(T_{max})$ und der verschraubten Teile (Mutter- bzw. Sacklochgewinde) $R_{mM}(T_{max})$ werden vor allem für die Bestimmung einer ausreichenden Einschraubtiefe benötigt.

In der VDI 2230 [31] wird die temperaturabhängige Vorspannkraftänderung aufbauend auf der Vorspannkraft bei Raumtemperatur ermittelt. Hierfür wird zusätzlich zu den Elastizitätsmoduln bei Raumtemperatur $E(T_0)$ und bei maximaler Betriebstemperatur $E(T_{max})$ auch der

10In dieser Leitlinie wird nicht zwischen der Streckgrenze R_e und der 0,2%-Dehngrenze $R_{p0.2}$ unterschieden. Typischerweise wird für Werkstoffe, die über keine ausgeprägte Streckgrenze verfügen, die Dehngrenze ermittelt und diese ersetzt als Wert für die Streckgrenze in die Materialbeschreibung eingesetzt.
Elastizitätsmodul bei minimaler Auslegungstemperatur benötigt, die gemäß des Regelwerks für die Bauart zu berücksichtigen ist.

Grenzflächenpressung

Die für die Bewertung der Flächenpressung in der Schraubenverbindung benötigte Grenzflächenpressung p_G kann vereinfachend nach der VDI 2230, Tabelle A9 [31] bestimmt werden, falls keine geeigneteren Werte zur Verfügung stehen, die durch Literaturangaben oder experimentelle Daten ausreichend belegt werden können. Die zulässigen Werte für die maximale Flächenpressung zwischen Tragzapfen und Lagerschalen (für die Lastfälle Kranhandhabung und Transport) müssen ebenfalls ausreichend abgesichert sein.

Kennwerte zum Nachweis der Betriebsfestigkeit

2.3.2 Thermische Kennwerte

Insbesondere bei Behältern mit nennenswert wärmeentwickelnden Inhalten benötigt man für die gegebenenfalls dadurch erforderliche Berechnung von zusätzlich auftretenden Verformungen und Spannungen sowie für die Ermittlung der temperaturabhängigen Änderungen der Vorspannung den Wärmeausdehnungskoeffizienten α_T für die einzelnen Bauteile des jeweils betrachteten Systems. Der Wärmeausdehnungskoeffizient α_T ist seinerseits wieder temperaturabhängig und in geeigneter Weise zu belegen.

2.3.3 Tribologische Kennwerte

Zur Bestimmung der Schwankungsbreite der Vorspannung sollten minimale und maximale Reibungsbeiwerte für die entsprechenden Materialpaarungen und Schmiermittel berücksichtigt werden. Es ist zwischen den Reibungsbeiwerten unter dem Schraubenkopf (μ_{Kmin} und μ_{Kmax}) und den Reibungsbeiwerten im Gewinde (μ_{Gmin} und μ_{Gmax}) zu unterscheiden. Die Reibungsbeiwerte sollten vorzugsweise experimentell ermittelt werden, wobei die Übertragbarkeit der Versuchsergebnisse auf die von der untersuchten Konfiguration abweichenden Verbindungen sicherzustellen ist. Daneben ist auch die Verwendung von ausreichend abgesicherten Literaturwerten zulässig, wenn damit die Konservativität des Ansatzes sichergestellt ist [2]. Gleiches gilt für den Haftreibungsbeiwert in der Trennfuge, der für den Nachweis der Sicherheit gegen Verrutschen des LAP notwendig ist.
2.4 Ermitteln der wirksamen Beanspruchungen und deren Bewertung

2.4.1 Allgemeine Festigkeit der Lastanschlagpunkte

Ermitteln der wirksamen Spannungen

Der Spannungsnachweis ist die Vergleichsspannung nach der Gestaltänderungsenergiehypothese (von Mises-Vergleichsspannung) an der höchstbeanspruchten Stelle zugrunde zu legen.

Bewertung der Spannungen

Die Bewertung der Vergleichsspannungen erfolgt in Anlehnung an das Nennspannungskonzept der KTA 3905 [27] und unter Berücksichtigung der Anforderungen gemäß [13].

Falls Gleichung (2.2) für die maximale Kerbspannung (bei der Nachweisführung mit Nennspannungen die maximale Nennspannung) erfüllt ist, gilt der allgemeine Spannungsnachweis als erbracht [27].

\[\sigma_v \leq \frac{R_{p0,2}(T_{\text{max}})}{1,5} \]

(2.2)

Überschreitet die maximale Kerbspannung bei der Nachweisführung mit örtlichen Spannungen den Wert \(R_{p0,2}(T_{\text{max}})/1,5 \), liegt aber noch unterhalb \(R_{p0,2}(T_{\text{max}}) \), kann der Nachweis auch als Traglastnachweis mit einer 2,25-fachen Lastüberhöhung geführt werden. Dabei müssen die in der Tabelle 2.3 aufgeführten Lastbeiwerte verwendet werden. Der dort festgelegte Lastbeiwert für die zusätzlichen Anforderungen nach KTA 3905 entspricht den Anforderungen in [13]: Bei Lastaufnahmemitteln, die statisch mit einem Lastbeiwert von 3,0 belastet werden, darf kein vollständiges Plastizieren des tragenden Querschnitts auftreten.\(^{11}\)

<table>
<thead>
<tr>
<th>Verwendungsbereich</th>
<th>Lastbeiwert(^{12})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erhöhte Anforderungen nach KTA 3905 [27]</td>
<td>4,0</td>
</tr>
<tr>
<td>Zusätzliche Anforderungen nach KTA 3905 [27]</td>
<td>3,0</td>
</tr>
<tr>
<td>Allg. Anforderungen an die Kranhandhabung</td>
<td>3,25</td>
</tr>
<tr>
<td>Transport auf öffentlichen Verkehrswegen</td>
<td>4,5</td>
</tr>
</tbody>
</table>

Tabelle 2.3: Lastbeiwerte für den Traglastnachweis

Der Traglastnachweis ist für den LAP auf der Basis örtlicher Dehnungen zu führen. Dabei muss für das LAS einschließlich der Schrauben ein elastisch-idealplastisches Materialmodell mit dem \(R_{p0,2}(T_{\text{max}}) \)-Wert als Fließspannung zugrunde gelegt werden. Das Kriterium zum Erfüllen der Sicherheitsanforderungen ist keine vollständige Plastizierung des für die Tragfähigkeit

\(^{11}\)Siehe [13], Punkt 5.1.1.1, Satz (1)
\(^{12}\)Dieses sind die 2,25-fachen Werten der Tabelle 2.1.
relevanten Querschnitts: Entlang eines Schnittes durch den höchstbelasteten Querschnitt des LAP muss mindestens ein Bereich existieren, in dem \(\epsilon_{pl} = 0 \) gilt. \(\epsilon_{pl} \) ist dabei der plastische Anteil der Vergleichsdehnung. Die Schrauben werden beim Traglastnachweis nicht bewertet. Sie müssen den Anforderungen des Abschnitts 2.4.4, Tabelle 2.5, genügen.

2.4.2 Flächenpressung zwischen Tragzapfen und Lagerschale

Als Lastanschlagmittel am Tragzapfen werden im Allgemeinen Laschen verwendet. Zwischen Lasche und Tragzapfen befindet sich in der Regel eine Lagerschale aus einem vergleichsweise weichem Metall, z. B. einer Kupferlegierung. Im Rahmen dieser Leitlinie wird lediglich das Einhalten der Grenzflächenpressung \(p_G(T_{\text{max}}) \) am Tragzapfen betrachtet. Die Ermittlung der Flächenpressung kann entweder mit Hilfe von konservativen analytischen Ansätzen oder auch numerisch erfolgen. Es ist bei der direkten Modellierung der Interaktion zwischen Lagerschal e und Tragzapfen oder unter Verwendung alternativer Rechenmodelle darauf zu achten, dass die am Tragzapfen ermittelte Kontaktspannung abdeckend erfasst wird. D. h. im Falle des Verwendens eines FE-Modells sollte für die Lagerschale ein verfestigendes Materialmodell mit einem oberen Wert für die Fließgrenze gewählt werden. Die ermittelte Kontaktspannung \(p_{\text{max}} \) muss unter der Grenzflächenpressung liegen.

2.4.3 Betriebsfestigkeit der Lastanschlagpunkte

Ermitteln der wirksamen Spannungen

Die wirksamen Spannungen sind den Analysen für die unterschiedlichen Lastannahmen nach Abschnitt 2.2.3 zu entnehmen. Dabei ist die höchstbeanspruchte Stelle unter Berücksichtigung aller Lastannahmen auszuwerten.

Bei der Berechnung des LAS mit Hilfe einer FE-Analyse sind infolge der im Modell enthaltenen Nichtlinearitäten (Kontaktbedingungen) die resultierenden Spannungen oft nicht proportional zu der jeweils aufgenommenen Last. Die Ergebnisse der Berechnung für unterschiedliche Lastbeiwerte sind damit im Allgemeinen nicht durch lineare Interpolation der Ergebnisse einer FE-Analyse zugänglich.

Bewertung der wirksamen Betriebsbeanspruchung

Da das experimentelle Ermitteln von Bauteil-Wöhlerkurven sehr aufwändig ist, können nach der FKM-Richtlinie auch synthetische Wöhlerkurven herangezogen werden (siehe auch Abschnitt 2.3.1). Knickpunktzyklenzahlen \(N_D \) und Neigungsexponenten \(k \) für die Konstruktion synthetischer Wöhlerkurven sind dabei Tabelle 4.4.4 der FKM-Richtlinie zu entnehmen [18].

Der zur endgültigen Bestimmung der synthetischen Wöhlerlinie erforderliche Sicherheitsfaktor \(j_{\text{erf}} \) basiert auf den Sicherheitsbeiwerten von 2,0 für zusätzliche und von 2,5 für erhöhte Anforderungen nach KTA 3905 [27]. Diesen Sicherheitsbeiwerten liegt jedoch eine Überlebenswahrscheinlichkeit von 50 % zugrunde gegenüber 97,5 % für die Werte der FKM-Richtlinie. Daher können bei einer Berechnung nach der FKM-Richtlinie die von der KTA 3905 vorgegebenen Sicherheitsbeiwerte reduziert werden. Unter der Voraussetzung einer mittleren logarithmischen Standardabweichung von \(\sigma_{\text{lgS}} = 0,04 \) erhält man aus Tabelle 5.11.1 der FKM-Richtlinie [18] einen statistischen Umrechnungsfaktor von 1,2, so dass die
Verwendungsbereich	Sicherheitsbeiwert
Erhöhte Anforderungen nach KTA 3905 [27] | 2,1 (2,6) \(^{13}\)
Zusätzliche Anforderungen nach KTA 3905 [27] | 1,7
Allg. Anforderungen an die Kranhandhabung | 1,35
Transport auf öffentlichen Verkehrswegen | 1,35

Tabelle 2.4: Sicherheitsbeiwerte für den Betriebsfestigkeitsnachweis der LAP

Sicherheitsbeiwerte mit Hilfe der Gleichung (2.3) angepasst werden können.

\[j_{\text{erf}} = J_{\text{KTA}} \frac{1}{1,2} \]

(2.3)

Auf diese Weise erhält man die Sicherheitsfaktoren der Tabelle 2.4 für den Geltungsbereich der KTA 3905. Falls der Redundanzfaktor für erhöhte Anforderungen nach der KTA 3905 zu berücksichtigen ist, muss für nicht redundante LAP ein Sicherheitsbeiwert von 2,1 · 1,25 = 2,6 angesetzt werden. Für die Kranhandhabungen außerhalb des Geltungsbereichs der KTA 3905 und für den Transport auf öffentlichen Verkehrswegen sollte der Sicherheitsfaktor der FKM-Richtlinie [18], Tabelle 4.5.1, für den Fall regelmäßiger Inspektion und hoher Schadensfolgen gewählt werden. Ist für die LAP eine kombinierte Beanspruchung zu berücksichtigen, beispielsweise aus den Kranhandhabungen im Geltungsbereich der KTA 3905 und aus der transportbedingten Belastung, ist der höhere von den dazugehörigen Sicherheitsbeiwerten der Auslegung zugrunde zu legen. Die für den eigentlichen Betriebsfestigkeitsnachweis notwendige ertragbare Minersumme \(D_M \) variiert je nach Fertigungsverfahren und Werkstoffgruppe und muss nach den Vorgaben der FKM-Richtlinie [18], Tabelle 4.4.3, gewählt werden.

2.4.4 Allgemeine Festigkeit der Schrauben von Lastanschlagsystemen

Ermitteln der wirksamen Spannungen

Die Zugspannung \(\sigma_{z,\text{Mon}} \) und die Torsionsspannung \(\tau_{G,\text{Mon}} \) bei der Montage der Verbindung werden nach VDI 2230 [31] ermittelt. Die für die Festigkeitsbewertung der Schrauben im Montagezustand notwendige Vergleichsspannung wird nach Gleichung (2.4)

\[\sigma_v = \sqrt{\sigma_{z,\text{Mon}}^2 + 3 \left(k_r \tau_{G,\text{Mon}} \right)^2} \]

(2.4)

mit dem Reduktionskoeffizienten \(k_r = 1,0 \) gebildet.

Für Kranhandhabung und Routine-Beförderungsbedingungen werden die Verläufe der wirksamen Zug- und Biegespannungen über die Schraubenachse mit der in der FE-Analyse erhaltenen Spannungsverteilung \(\sigma \) in den jeweiligen Querschnitten ermittelt. Dazu werden zunächst die Beiträge der Axialkraft \(N \) und des Biegemoments \(M_b \) durch Integration der Spannungsverteilung \(\sigma_n \) über die entsprechende Schnittfläche bzw. durch Summation über

\(^{13}\) Wert in Klammern, falls ein Redundanzfaktor zu berücksichtigen ist.
die Knotenkräfte14 des FE-Modells, wie in Gleichungen (2.5) bis (2.8) dargestellt, berechnet.

\[
N = \int_A \sigma_n \, dA \quad N = |N| = \sum_i F_{1,i} \tag{2.5}
\]

\[
M_b = \int_A r \times \sigma_n \, dA \quad M_b = |M_b| = \sqrt{M_2^2 + M_3^2} \tag{2.6}
\]

\[
M_2 = \sum_i r_{3,i} F_{1,i} \tag{2.7}
\]

\[
M_3 = -\sum_i r_{2,i} F_{1,i} \tag{2.8}
\]

Dabei steht \(dA = n \, dA\) für das Flächenelement und \(\sigma_n\) für die Normalspannung. \(F_{1,i}\) ist die axiale Kraft an einem diskreten Knoten \(i\) und \(r = [0, r_{2,i}, r_{3,i}]\) der Abstandsvektor des Knotens in einem in der jeweiligen Querschnittsfläche willkürlich orientierten kartesischen Koordinatensystem. Dabei befindet sich der Koordinatenursprung auf der Schraubenachse und die Koordinate \(x_1\) zeigt in Richtung der Schraubenachse. Die Verhältnisse sind in Abbildung 2.1 veranschaulicht. Die Vernetzung der Schraube ist entsprechend regelmäßig zu gestalten. Aus der nach Gleichungen (2.5) bis (2.8) bestimmten Normalkraft \(N\) und dem Biegemoment \(M_b\) können nun mit Hilfe des Querschnitts \(A\) und des Widerstandsmoments \(W\) die Zug- und Biegespannungen \(\sigma_z\) und \(\sigma_b\) gemäß Gleichung (2.9) bestimmt werden. Diese Spannungen haben den Charakter von Nennspannungen.

\[
\sigma_z = \frac{N}{A} \quad \sigma_b = \frac{M_b}{W} \tag{2.9}
\]

Die wirksamen Spannungen für die Schrauben von LAS unter der Betriebsbeanspruchung werden nach Gleichung (2.10) mit dem Reduktionskoeffizienten \(k_r = 0,5\) [31] ermittelt.

\[
\sigma_r = \sqrt{(\sigma_z + \sigma_b)^2 + 3 (k_r \tau_{G,Mon})^2} \tag{2.10}
\]

14Die Summation der Knotenkräfte entspricht der Integration der Spannungen und stellt die praktisch am einfachsten umzusetzende Vorgehensweise dar.

Abbildung 2.1: Ermittlung der Normalkraft und der Momente an der Schraube

\[
M_b \quad M_2 \quad M_3 \quad x_3 \quad x_2 \quad x_1
\]

Die wirksamen Spannungen für die Schrauben von LAS unter der Betriebsbeanspruchung werden nach Gleichung (2.10) mit dem Reduktionskoeffizienten \(k_r = 0,5\) [31] ermittelt.

\[
\sigma_r = \sqrt{(\sigma_z + \sigma_b)^2 + 3 (k_r \tau_{G,Mon})^2} \tag{2.10}
\]

14Die Summation der Knotenkräfte entspricht der Integration der Spannungen und stellt die praktisch am einfachsten umzusetzende Vorgehensweise dar.
Da die FE-Modellierung der Schrauben in der Regel stark idealisierend ist (z. B. vereinfachte Modellierung des Gewindes), werden diese Nennspannungen anstatt der lokalen Spannungen aus FE-Analysen für die nachfolgende Bewertung herangezogen. Diese Verfahrensweise erlaubt eine Bewertung in Anlehnung an die Kriterien der KTA 3905 [27] und der VDI 2230 [31].

Bewertung der Spannungen

Die Kriterien für den Montagezustand und die Betriebsbeanspruchung sind in der Tabelle 2.5 zusammenfassend dargestellt.

<table>
<thead>
<tr>
<th>Verwendungsbereich</th>
<th>zulässige Spannungen Montage</th>
<th>Betrieb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erhöhte Anforderungen nach KTA 3905 [27]</td>
<td>$\sigma_v \leq 0,7 R_{p0,2}(T_0)$</td>
<td>$\sigma_v \leq R_{p0,2}(T_{\text{max}})$</td>
</tr>
<tr>
<td>Zusätzliche Anforderungen nach KTA 3905 [27]</td>
<td>$\sigma_v \leq 0,7 R_{p0,2}(T_0)$</td>
<td>$\sigma_v \leq R_{p0,2}(T_{\text{max}})$</td>
</tr>
<tr>
<td>Allg. Anforderungen an die Kranhandhabung</td>
<td>$\sigma_v \leq 0,9 R_{p0,2}(T_0)$</td>
<td>$\sigma_v \leq R_{p0,2}(T_{\text{max}})$</td>
</tr>
<tr>
<td>Transport auf öffentlichen Verkehrswegen</td>
<td>$\sigma_v \leq 0,9 R_{p0,2}(T_0)$</td>
<td>$\sigma_v \leq R_{p0,2}(T_{\text{max}})$</td>
</tr>
</tbody>
</table>

Tabelle 2.5: Kriterien für die Spannungsbewertung der Schrauben von LAS

Außerhalb des Geltungsbereichs der KTA 3905 kann bezüglich der Montagebedingungen die Festlegung der VDI 2230 [31] zur Anwendung gebracht werden. Im Geltungsbereich der KTA 3905 muss bei der Handhabung zusätzlich noch Gleichung (2.11) berücksichtigt werden [27].

$$\sigma_z - \sigma_{z,\text{Mon}} \leq 0,1 R_{p0,2}(T_{\text{max}})$$ \hspace{1cm} (2.11)

Falls ein Traglastnachweis für den LAP nach Abschnitt 2.4.1 vorgenommen werden muss, werden die Schrauben mit einem elastisch-idealplastischen Materialgesetz modelliert, um eine realitätsnahe Lastverteilung sicherzustellen. Als Fließgrenze ist $R_{p0,2}(T_{\text{max}})$ zu verwenden. Der Traglastnachweis dient ausschließlich der zusätzlichen Absicherung der Auslegung des LAP. Die Schrauben werden dabei nicht bewertet.

2.4.5 Flächenpressung in der Schraubenverbindung

Ermitteln der wirksamen Flächenpressung

Aufgrund der überlagerten Biegebeanspruchung der Schrauben kommt zum Ermitteln der wirksamen Flächenpressung ein gegenüber der VDI 2230 [31] weitergehender Ansatz zur Anwendung. Ausgehend von den bei der Auswertung der Analysen ermittelten Spannungen σ_z und σ_b (beschrieben in Abschnitt 2.4.4) wird die wirksame Flächenpressung nach Gleichung (2.12) berechnet.\(^{15}\)

$$p_{\text{max}} = \sigma_z \frac{A}{A_K} + \sigma_b \frac{W}{W_K}$$ \hspace{1cm} (2.12)

Die Spannung σ_z multipliziert mit dem Querschnitt A der Schraube ergibt die axiale Schraubenkraft und die Biegespannung σ_b multipliziert mit dem Widerstandsmoment W der Schraube ergibt das Biegemoment. Die Flächenpressung erhält man durch Division mit dem für die Flächenpressung relevanten Querschnitt A_K bzw. dem Widerstandsmoment W_K, welche die Kopfauflagefläche darstellen.

\(^{15}\)Konservativ kann die Flächenpressung auch mit $p_{\text{max}} = \left(\sigma_z + \sigma_b\right) \frac{A}{A_K}$ abgeschätzt werden.
Bewertung der Flächenpressung

Die Bewertung der Flächenpressung erfolgt nach Gleichung (2.13). Zur Bestimmung der Grenzflächenpressung $p_G(T_{\text{max}})$ wird auf Abschnitt 2.3.1 verwiesen.

\[p_{\text{max}} \leq p_G(T_{\text{max}}) \] (2.13)

2.4.6 Einschraubtiefe

Ermitteln der erforderlichen Einschraubtiefe

Bewertung der Einschraubtiefe

Für die Bewertung der aus den Zeichnungsangaben ermittelten Einschraubtiefe l_{Gew} soll Gleichung (2.14) gelten. Je nach Berechnungsansatz müssen die Gewindeansenkungen bei der Berechnung von l_{erf} oder beim Ermitteln von l_{Gew} berücksichtigt werden.

\[l_{\text{Gew}} \geq l_{\text{erf}} \] (2.14)

Bei einem Nachweis über die Tragfähigkeiten muss gezeigt werden, dass die geringste Tragfähigkeit im freien belasteten Gewinde oder im Schaft auftritt.

2.4.7 Betriebsfestigkeit der Schrauben von Lastanschlagsystemen

Ermitteln der wirksamen Spannungen

Die wirksamen Spannungen sind den FE-Analysen für die unterschiedlichen Lastannahmen nach Abschnitt 2.2.3 zu entnehmen. Dabei sind die über den Querschnitt linearisierten Ausschlagspannungen der Schrauben nach Abschnitt 2.4.4 zu berücksichtigen. Des Weiteren kann es erforderlich sein, die Beanspruchungen der Schrauben durch Montage, Demontage und Remontage zu berücksichtigen [27].

Bewertung der wirksamen Betriebsbeanspruchung

\[N_D \]
der Dauerhaltbarkeit σ_{ASG} für schlussgewalzte bzw. σ_{ASV} für schlussvergütete Schrauben entsprechend zu berechnen.

Der erforderliche Sicherheitsfaktor S_D muss je nach Verwendungsbereich gewählt werden und ist in der Tabelle 2.6 aufgeführt. Falls der Redundanzfaktor für erhöhte Anforderungen nach der KTA 3905 [27] zu berücksichtigen ist, muss für die Schrauben von nicht redundanten LAS ein Sicherheitsfaktor von $2,5 \cdot 1,25 = 3,1$ angesetzt werden. Ist für die Schrauben von LAS eine kombinierte Beanspruchung zu berücksichtigen, beispielsweise aus den Kranhandhabungen im Geltungsbereich der KTA 3905 und aus der transportbedingten Belastung, ist der höhere von den dazugehörigen Sicherheitsbeiwerten der Auslegung zugrunde zu legen.

<table>
<thead>
<tr>
<th>Verwendungsbereich</th>
<th>Sicherheitsbeiwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erhöhte Anforderungen nach KTA 3905 [27]</td>
<td>$2,5 \ (3,1)$</td>
</tr>
<tr>
<td>Zusätzliche Anforderungen nach KTA 3905 [27]</td>
<td>2,0</td>
</tr>
<tr>
<td>Allg. Anforderungen an die Kranhandhabung</td>
<td>1,5 $^\text{18}$</td>
</tr>
<tr>
<td>Transport auf öffentlichen Verkehrswegen</td>
<td>1,5</td>
</tr>
</tbody>
</table>

Tabelle 2.6: Sicherheitsbeiwerte für den Betriebsfestigkeitsnachweis der Schrauben von LAS

Die für die Bewertung jeweils anzusetzende ertragbare Minersumme ist ausreichend zu begründen.

$^\text{17}$ Wert in Klammern, falls ein Redundanzfaktor zu berücksichtigen ist.

$^\text{18}$ Gemäß VDI 2230 [31], Element (R9/4) sei die Sicherheit vom Anwender festzulegen, vorgeschlagen wird ein Wert von 1,2. Da jedoch für den Zeitfestigkeitsbereich keine gesicherten Erkenntnisse vorliegen ([31], Abschnitt 5.5.3) wird in dieser Leitlinie für die Nachweise außerhalb des Geltungsbereichs der KTA 3905 ein Sicherheitsbeiwert von 1,5 berücksichtigt.
3 Deckelsysteme

3.1 Berechnungsverfahren und Modellbildung

Um eine möglichst realitätsnahe Nachweisführung des gesamten Verschlusssystems unter Routine-, normalen und Unfall-Beförderungsbedingungen zu ermöglichen, ist selbst nach Versuchen eine numerische Festigkeitsanalyse, vorzugsweise mit der FE-Methode, anzustreben. Mit dieser Vorgehensweise können die Wechselwirkungen zwischen den einzelnen Bauteilen des Verschlusssystems hinreichend genau abgebildet werden. FE-Analysen für die unter normalen und Unfall-Beförderungsbedingungen vorliegenden stoßartigen Belastungen des Verschlusssystems können dabei auch quasi-statisch durchgeführt werden, wenn nachgewiesen werden kann, dass dynamische Effekte nur einen vernachlässigbaren Einfluss auf die Beanspruchung der Bauteile haben bzw. durch statische Annahmen abgedeckt sind.

Sollten im Ausnahmefall dennoch analytische Berechnungsmethoden angewendet werden, muss sichergestellt sein, dass die angesprochenen Wechselwirkungen angemessen berücksichtigt werden und insbesondere auch die überlagerten Biegebeanspruchungen der Schrauben vernachlässigbar sind. In diesem Fall kann auf die Systembetrachtung verzichtet werden. Die Bauteile sind dann einzeln zu untersuchen.

Speziell für die Schrauben ist als Grundlage der Sicherheitsnachweise für Routine-, normale und Unfall-Beförderungsbedingungen auch eine Betrachtung des Montagezustands erforderlich. Diese Berechnungen können mit analytischen Methoden durchgeführt werden, vorzugsweise mit Hilfe der VDI 2230 [31].

Ein in das Gesamtmodell des Verschlusssystems integriertes oder separates FE-Modell eines Deckelsystems sollte geeignete Teilmodelle für den Deckel selbst, die Deckelschrauben und den
Grundkörper1, mit dem der Deckel verschraubt ist, enthalten. Wenn die Beanspruchungen und Verformungen des jeweiligen Grundkörpers keinen Einfluss auf die Beanspruchung der Komponenten des betrachteten Deckelsystems haben und andere Wechselwirkungen vernachlässigbar sind, kann eine separate Modellierung der Deckelsysteme oder auch von einzelnen Komponenten erfolgen. Die verschraubten Teile können dabei auf die Einflusszone des Deckelsystems reduziert werden. Bereiche, die auf die Ermittlung der Beanspruchung am Deckelsystem keinen Einfluss haben, müssen nicht modelliert werden. Die Betrachtung kann auf einen Systemausschnitt beschränkt werden (z. B. Kreisausschnitt oder Sektor), wenn die Symmetrie der Deckelgeometrie und der Belastung dies zulässt.

Für die Untersuchung der Auswirkungen einer ungleichmäßigen Betriebstemperaturverteilung auf die Integrität und die Dichtfunktion des Verschlusssystems sowie für die Analyse des Verschlussystems während und nach der Erhitzungsprüfung sind weitere geeignete FE-Modelle zu erstellen.

\textbf{3.2 Lastannahmen}

\textbf{3.2.1 Montage}

Zur Berechnung der für die Deckelbefestigung benötigten Vorspannung der Deckelschrauben ist die Anwendung der VDI 2230 31 zu empfehlen. Dabei sollte die mögliche Schwankungsbreite der Vorspannung entweder durch die Festlegung eines geeigneten Anziehfaktors nach 31 oder direkt aus der Drehmomenttoleranz des Anziehverfahrens in Verbindung mit der Schwankungsbreite der Reibungsbeiwerte für das verwendete Schmiermittel bestimmt werden: Das maximale Anziehmoment (Nennanziehmoment zuzüglich der Drehmomenttoleranz des Anziehverfahrens) gekoppelt mit den minimalen Reibungsbeiwerten ist zur Bestimmung der maximalen Schraubenvorspannkraft anzusetzen, während das minimale Anziehmoment (Nennanziehmoment abzüglich der Drehmomenttoleranz des Anziehverfahrens) gekoppelt mit den maximalen Reibungsbeiwerten für die minimale Schraubenvorspannkraft zu berücksichtigen ist.2

Zusätzlich sind bei Definition der minimalen Vorspannkraft die Setzeffekte in der Verbindung sowie die mögliche Reduzierung infolge der Temperaturänderungen einzubeziehen. Ein möglicher temperaturabhängiger Zuwachs der maximalen Vorspannung ist ebenfalls zu betrachten. Dabei sind die Temperaturen gemäß den gefahrgutrechtlichen Anforderungen zu untersuchen. Der Temperaturbereich kann sich von \(-40^\circ\text{C}\) (24, \S637) bis zur höchsten zu unterstellenden Betriebstemperatur erstrecken. Die erhaltenen Vorspannkkräfte sollten nachfolgend bei den Lastannahmen u. a. in den FE-Analysen des Deckelsystems Berücksichtigung finden. Bei einer geeigneten Modellierung (vor allem hinsichtlich der Vorspannkraft) können die temperaturbedingten Effekte direkt in diese Analyse integriert werden.

\textbf{3.2.2 Gefahrgutrechtliche Beförderungsbedingungen}

Eine Analyse des Verschlusssystems für Routine-, normale und Unfall-Beförderungsbedingungen sollte insbesondere die Dichtungskräfte, die Schraubenvorspannung unter Berücksichtigung ihrer Änderung nach der Montage (Setzeffekte und thermische Einflüsse), den inneren sowie äußeren Druck (Wassertauchprüfung) und, im Falle einer quasi-statischen Betrachtung, die

1Bei Primär- und Sekundärdeckel ist dieses der Behälterkörper, bei Kleindeckeln der Primär- bzw. Sekundärdeckel.

2Die hier am Beispiel des drehmomentgesteuerten Verfahrens gezeigte Ermittlung der Schwankungsbreite der Schraubenvorspannkraft ist im Falle eines alternativen Anziehverfahrens sinngemäß anzuwenden.

Bei der Analyse der thermisch bedingten Effekte sind je nach Belastungsfall entweder ungleichmäßige stationäre Verteilungen der Betriebstemperatur oder nichtstationäre Temperaturfelder infolge der Erhitzungsprüfung in den Lastannahmen zu berücksichtigen. Wenn sich die für die Kranhandhabung des Behälters vorgesehenen LAP an Deckeln befinden, z. B. Ringschrauben, sind die zusätzlichen Beanspruchungen infolge der Kranhandhabung in den Nachweisen zu berücksichtigen.

3.3 Werkstoffkennwerte

Es ist zwischen Werkstoffkennwerten bei Raumtemperatur \(T_0 \) und bei Auslegungstemperatur zu unterscheiden. Bei der Definition des auslegungsrelevanten Temperaturbereichs sind die Festlegungen des § 637 [24] sowie die Ergebnisse der thermischen Analyse des Behälters zu beachten.

Für die Betrachtung des Montagezustands können die Werkstoffkennwerte bei Raumtemperatur angesetzt werden, z. B. \(R_{p0,2}(T_0) \). Unter Betriebsbedingungen ist es im Allgemeinen konservativ die bei der thermischen Analyse ermittelte maximale Betriebstemperatur \(T_{\text{max}} \) als Grundlage zu verwenden, z. B. \(R_{p0,2}(T_{\text{max}}) \).

3.3.1 Mechanische Kennwerte

E-Modul, Streckgrenze und Zugfestigkeit

Zum Ermitteln der wirksamen Spannungen sollte insbesondere für FE-Analysen ein realitätsnahes Werkstoffmodell verwendet werden. Wesentlicher Bestandteil eines solchen Modells ist der Elastizitätsmodul \(E(T) \), der für alle relevanten Bauteile vorliegen muss. Weitere Werkstoffkennwerte, die zum Ermitteln der wirksamen Spannungen verwendet werden, sind ebenfalls in geeigneter Weise zu belegen.

Für die Nachweisführung sowohl des Deckels als auch der Schrauben ist die Streckgrenze bei maximaler Betriebstemperatur \(R_{p0,2}(T_{\text{max}}) \) entscheidend. Sie ist für beide Bauteile zu definieren. Die Zugfestigkeiten des jeweiligen Schraubenwerkstoffs (Bolzengewinde) \(R_{\text{mb}}(T_{\text{max}}) \) und der verschraubten Teile (Mutter- bzw. Sacklochgewinde) \(R_{\text{mm}}(T_{\text{max}}) \) werden vor allem für die Bestimmung einer ausreichenden Einschraubtiefe benötigt.
In der VDI 2230 [31] wird die temperaturabhängige Vorspannkraftänderung aufbauend auf
der Vorspannkraft bei Raumtemperatur ermittelt. Hierfür wird zusätzlich zu den Elastizitäts-
moduln bei Raumtemperatur \(E(T_0) \) und bei maximaler Betriebstemperatur \(E(T_{\text{max}}) \) auch
der Elastizitätsmodul bei minimaler Auslegungstemperatur benötigt, die gemäß des Regelwerks
für die Bauart zu berücksichtigen ist.

Grenzflächenpressung

Die für die Bewertung der Flächenpressung in der Schraubenverbindung benötigte Grenzflä-
chenpressung \(p_G \) kann vereinfachend nach der VDI 2230, Tabelle A9 [31] bestimmt werden,
falls keine geeignetere Werte zur Verfügung stehen, die durch Literaturangaben oder experi-
mentelle Daten ausreichend belegt werden können.

3.3.2 Thermische Kennwerte

Insbesondere bei Behältern mit wärmeentwickelnden Inhalten und für die Ermittlung der
Beanspruchung bei der Erhitzungsprüfung benötigt man für die erforderliche Berechnung
von zusätzlich auftretenden Verformungen und Spannungen sowie für die Ermittlung der
temperaturabhängigen Änderungen der Vorspannung den Wärmeausdehnungskoeffizienten \(\alpha_T \)
für die einzelnen Bauteile des jeweils betrachteten Systems. Der Wärmeausdehnungskoeffizient
\(\alpha_T \) ist seinerseits wieder temperaturabhängig und in geeigneter Weise zu belegen.

3.3.3 Tribologische Kennwerte

Zur Bestimmung der Schwankungsbreite der Vorspannung sollten minimale und maximale
Reibungsbeiwerte für die entsprechenden Materialpaarungen und Schmiermittel berücksichtigt
werden. Es ist dabei zwischen den Reibungsbeiwerten unter dem Schraubenkopf \((\mu_{K\text{min}} \text{ und} \mu_{K\text{max}}) \) und den Reibungsbeiwerten im Gewinde \((\mu_{G\text{min}} \text{ und} \mu_{G\text{max}}) \) zu unterscheiden. Die
Reibungsbeiwerte sollten vorzugsweise experimentell ermittelt werden, wobei die Übertrag-
barkeit der Versuchsergebnisse auf die von der untersuchten Konfiguration abweichenden
Verbindungen sicherzustellen ist. Daneben ist auch die Verwendung von ausreichend abgesich-
erten Literaturwerten zulässig, wenn damit die Konservativität des Ansatzes sichergestellt
ist [2].

Dieser Abschnitt gilt analog auch für den Haftreibungsbeiwert \(\mu_{D\text{min}} \) in der Trennfuge, der
für den Nachweis der Sicherheit gegen Verrutschen der jeweiligen Deckel notwendig ist. Falls
in Berechnungsmodellen Wechselwirkungen des Verschlusssystems mit anderen Bauteilen des
Behälters betrachtet werden (z. B. Deckel mit Stoßdämpfer), sind bei Kontaktdefinitionen in
FE-Modellen die jeweils ausgewählten Reibungsbeiwerte in geeigneter Weise zu begründen.

3.3.4 Ummantelte Federkern-Metalldichtungen

Grundlage für die Ermittlung der Verformung der Dichtung nach der Montage der Deckel,
unter Routine-Beförderungsbedingungen und nach den für normale und Unfall-Beförde-
metallummantelten Dichtungen mit Federkern wird in der Dichtungskennlinie ein Verformungs-
und ein Entspannungszyklus unterscheiden [20]. Dieser Zyklus, aufgetragen für die auf die
Dichtungslänge bezogene Verpresskraft über die Verformung, ist in Abbildung 3.1 als schwarze
Kennlinie dargestellt, die der linken vertikalen Achse zugeordnet ist. Der rechten vertikalen
Achse ist die die Verformungsgrad entsprechende Leckagerate zugeordnet, die zusätzlich
als blaue Kennlinie eingezeichnet ist. Während des Verformungszyklus unterschreitet die
Dichtung bei der Presskraft Y_0 und der Verformung e_0 erstmals die als Dichtheitskriterium spezifizierte Standard-Helium-Leckagerate. Oberhalb einer kritischen Verformung e_c besteht die Gefahr eines Versagens der Dichtung. Der gewählte Arbeitspunkt der Dichtung liegt zwischen diesen beiden Grenzwerten bei der Presskraft Y_2 und der Verformung e_2.

Im Entspannungszyklus bleibt die Dichtwirkung (Unterschreiten der spezifizierten Standard-Helium-Leckagerate) oberhalb der Presskraft Y_1 und der Verformung e_1 erhalten. Bei Unterschreiten der Presskraft Y_1 tritt eine Überschreitung der spezifizierten Leckagerate auf. Als spezifizierte Standard-Helium-Leckagerate ist dabei die Heliumdichtheit anzusetzen, die unter Berücksichtigung der herstellerspezifischen Qualitätsmerkmale für Dichtungen und Dichtflächen erreicht wird. Sie beträgt für den o.g. Dichtungstyp in der Regel $10^{-8} \text{Pa m}^3/\text{s}$ [20]. Der für die Auslegung wichtige optimale Arbeitspunkt der Dichtung liegt im Punkt (e_2, Y_2). Bei Metalldichtringen anderen Typs ist deren spezifische Dichtungskennlinie bei der Auslegung zugrunde zu legen.

Ausgehend von der Dichtungskennlinie (Abbildung 3.1) wird der Rückverformungskennwert (nutzbare elastische Verformung) r_u definiert (3.1).

$$r_u = e_2 - e_1$$ \hspace{1cm} (3.1)

3.3.5 Elastomerdichtungen

Wenn Elastomerdichtungen Bestandteil der dichten Umschließung sind, muss auch für diese Dichtungswerkstoffe ein Rückstellvermögen definiert werden. Die notwendigen Festlegungen sind im Zuge der Dichtungsqualifizierung zu treffen.

3.4 Ermitteln der wirksamen Beanspruchungen und deren Bewertung

3.4.1 Festigkeit der Deckelschrauben

Ermitteln der wirksamen Spannungen

Die Zugspannung $\sigma_{z,\text{Mon}}$ und die Torsionsspannung $\tau_{G,\text{Mon}}$ bei der Montage der Verbindung werden nach VDI 2230 [31] ermittelt. Die für die Festigkeitsbewertung der Schrauben im Montagezustand notwendige Vergleichsspannung σ_v wird nach Gleichung (2.4) mit dem Reduktionskoeffizienten $k_r = 1,0$ gebildet.

Für Routine-, normale und Unfall-Beförderungsbedingungen müssen zunächst die wirksamen Zug- und Biegespannungen (Nennspannungen) aus der in der FE-Analyse erhaltenen Spannungsverteilung analog der im Abschnitt 2.4.4 beschriebenen Vorgehensweise abgeleitet werden. Die Nennvergleichsspannung wird dann nach Gleichung (2.10) mit einem Reduktionskoeffizient $k_r = 0,5$ [31] ermittelt. In begründeten Ausnahmefällen, z. B. bei geringen Belastungen können die Schraubenspannungen analytisch, vorzugsweise nach [31], ermittelt werden.

Bewertung der Spannungen

(Streckgrenzenverhältnis) und gleichzeitig einem eingeschränkten plastischen Verformungsvermögen, vergleichbar der Festigkeitsklasse 10.9, sind von dieser Regelung ausgenommen und müssen in jedem Fall die Kriterien der Tabelle 3.1 erfüllen.

<table>
<thead>
<tr>
<th>Montage</th>
<th>Routine-</th>
<th>normale und Unfall-Beförderungsbedingungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primärdeckel, Sekundärdeckel, Kleindeckel mit Belastung durch den Inhalt</td>
<td>$\sigma_v \leq \frac{R_{p0,2}(T_0)}{1,5}$</td>
<td>$\sigma_v \leq \frac{R_{p0,2}(T_{max})}{1,1}$</td>
</tr>
<tr>
<td></td>
<td>$\sigma_z \leq \frac{R_{p0,2}(T_{max})}{1,5}$</td>
<td>$\sigma_z \leq \frac{R_{p0,2}(T_{max})}{1,1}$</td>
</tr>
<tr>
<td>Kleindeckel ohne Belastung durch den Inhalt</td>
<td>$\sigma_v \leq \frac{R_{p0,2}(T_0)}{1,1}$</td>
<td>$\sigma_v \leq \frac{R_{p0,2}(T_{max})}{1,1}$</td>
</tr>
<tr>
<td></td>
<td>$\sigma_z \leq \frac{R_{p0,2}(T_{max})}{1,1}$</td>
<td>$\sigma_z \leq \frac{R_{p0,2}(T_{max})}{1,1}$</td>
</tr>
</tbody>
</table>

Tabelle 3.1: Kriterien für die Spannungsbewertung der Deckelschrauben

3.4.2 Flächenpressung und Einschraubtiefe

Die Berechnung der wirksamen Flächenpressung in den Deckelschraubenverbindungen erfolgt nach Gleichung (2.12). Die Flächenpressung ist relevant bei Kriechvorgängen und Dauerbelastung [31]. Eine Bewertung ist daher nur für die Montage und Routine-Beförderungsbedingungen gemäß Gleichung (2.13) sinnvoll. Zur Bestimmung der Grenzflächenpressung $p_{G}(T_{max})$ wird auf Abschnitt 3.3.1 verwiesen.

Hinsichtlich der Ermittlung und Bewertung der Einschraubtiefe für die Deckelschrauben gelten sinngemäß die Festlegungen im Abschnitt 2.4.6.

3.4.3 Verpressen der Dichtungen

Auch unter Berücksichtigung des Setzverhaltens und der thermisch bedingten Änderungen muss die nach den Vorgaben des Abschnitts 3.2.1 ermittelte minimale Schraubenvorspannkraft $F_{M,\text{min}}$ eine ausreichende Verpressung der Dichtung, d. h. den Sitz des Deckels auf Block, gewährleisten. Die Montage auf Block muss geometrisch den vom Dichtungshersteller vorgegebenen Arbeitspunkt der jeweiligen Dichtung (e_2, Y_2, Abbildung 3.1) sicherstellen.

Ermitteln der Rückfederung der Dichtung im Belastungszustand

Die Rückfederung Δs unter Routine-, normalen und Unfall-Beförderungsbedingungen kann geometrisch aufgefasst werden als der berechnete Abstand u_D der Dichtflächen unter Belastung bezogen auf den berechneten initialen Abstand u_M der Dichtflächen nach der Deckelmontage auf Block (Gleichung 3.2), wenn u_M nachweislich durch rechnerische oder Modellierungseffekte begründet ist. Ist dies nicht der Fall, kann die Rückfederung Δs konservativ nur mit u_D ermittelt werden.

$$\Delta s = u_D - u_M$$ (3.2)

Bewertung der Rückfederung der Dichtung im Belastungszustand

Die Bewertung der Rückfederung Δs im Belastungszustand wird mit Hilfe des Kriteriums (3.3) vorgenommen, das die zulässige Rückfederung der Dichtung $r_{u,zul}$ unter Berücksichtigung der minimalen Schraubenvorspannkraft $F_{M,min}$ begrenzt. Der in (3.3) enthaltene Sicherheitsbeiwert von 2,0 gegenüber den aus Kennlinienversuchen ermittelten Werten für die nutzbare elastische Rückfederung bis zum Verletzen des Dichtheitskriteriums (Rückverformungskennwert r_u, siehe Abschnitt 3.3.4) kann bei ausreichend statistisch abgesicherter Datengrundlage auch hinsichtlich der temperatur- und standzeitbedingten Alterungseffekte geringer angesetzt werden.

$$\Delta s \leq r_{u,zul} \text{ mit } r_{u,zul} = \frac{r_u}{2,0}$$ (3.3)

Im Unterschied zu den stoßartigen Belastungen bei den mechanischen Fallprüfungen wird das Verschlusssystem bei der Erhitzungsprüfung über einen längeren Zeitraum beansprucht. Das Kriterium nach Gleichung (3.3) darf während dieser Prüfung und in der danach folgenden Abkühlungsphase zu keinem Zeitpunkt verletzt werden. Die Verformungen in Dichtungs bereichen des Verschlusssystems infolge der Erhitzungsprüfung sind mit den dort eventuell festgestellten geometrischen Änderungen (plastische Verformungen, Verschiebungen) nach den Fallprüfungen zu überlagern.

3.4.4 Festigkeit der Deckel

Ermitteln der wirksamen Spannungen

Bei der in der Regel notwendigen FE-Analyse für das Deckelsystem kann auch die Spannungsverteilung im Deckel ausgewertet werden. Im begründeten Ausnahmefall, z. B. bei einfachen Deckelgeometrien, ist im Rahmen einer separaten Berechnung auch ein Rückgriff auf analytische Lösungsverfahren zulässig, wie sie die Plattentheorie liefert [1, 33].

Bewertung der Spannungen

Der Nachweis gegen unzulässige plastische Verformungen für die aus Stahl gefertigten Deckel gilt als erbracht, wenn die Bedingung nach Gleichung (3.4) für die lokalen Spannungen an der höchst belasteten Stelle erfüllt ist.

\[\sigma_v \leq R_{p0,2}(T_{\text{max}}) \]

(3.4)

Wird das Kriterium nach Gleichung (3.4) nicht eingehalten, sind weitere Begründungen erforderlich, die unter Bezugnahme auf die Werkstoffeigenschaften und die konstruktive Ausführung des Deckelsystems die Erfüllung der Sicherheitsziele belegen.

3.4.5 Verrutschen der Deckel

Ermitteln der wirksamen Kräfte

Die Beschleunigungen für die angesprochenen Lastfälle unter Routine-, normalen und Unfall-Beförderungsbedingungen sind Grundlage für die zu ermittelnde Trägheitskraft F_T des Deckels. Dabei sind die Komponenten der Beschleunigungen transversal zur Behälterlängsachse sowie deren eventuelle Kombination zu berücksichtigen.

Die axialen Komponenten der Beschleunigungen und der Innendruck wirken als Betriebskraft auf die Schrauben. Die daraus resultierende Klemmkraft F_N kann beispielsweise aus der FE-Analyse durch Auswertung der Knotenkräfte in der Trennfuge gewonnen werden. Zusammen mit dem minimalen Haftreibungsbeiwert μ zwischen Deckel und Grundkörper erhält man die Reibkraft F_R (3.5).

$$F_R = \mu F_N \quad (3.5)$$

Bewertung der Kräfte

Unter Routine-Beförderungsbedingungen muss das Verrutschen der Deckel ausgeschlossen werden. Der Nachweis einer ausreichenden Sicherheit gegen Verrutschen S_G gilt als erbracht, wenn die Reibkraft, die sich bei minimaler Vorspannung der Schrauben unter Berücksichtigung des Setzverhaltens sowie der axial gerichteten Kräfte (Innendruck, axiale Beschleunigung) ergibt, entsprechend größer als die Trägheitskraft ist (3.6).

$$F_R(F_{M,\text{min}}) \geq S_G F_T \quad (3.6)$$

3.4.6 Weitere Nachweise

Ein Betriebsfestigkeitsnachweis für die Schrauben von Deckelsystemen kann erforderlich sein, wenn sich die für die Kranhandhabung des Behälters vorgesehenen LAP an Deckeln befinden. Hinsichtlich der Lastannahmen, der Nachweisverfahren und der Bewertungskriterien gelten dann die Festlegungen in den Abschnitten 2.2.3 und 2.4.7 dieser Leitlinie sinngemäß. Die Auswirkungen der wiederholten Montage- und Demontagevorgänge auf die Betriebsfestigkeit der Deckelschrauben sind analog zu [27] zu berücksichtigen.
Formelzeichenverzeichnis

\[A \] Querschnittsfläche
\[A_K \] Kopfauflagefläche
\[A \] Spannungsquerschnitt einer Schraube
\[D \] Gesamtschädigung des Bauteils nach Palmgren-Miner
\[D_M \] Ertragbare Minersumme
\[E(T_0) \] Elastizitätsmodul bei Raumtemperatur
\[E(T_{\text{max}}) \] Elastizitätsmodul bei maximaler Betriebstemperatur
\[F_{\text{M, min}} \] Minimale Schraubenvorspannungskraft
\[F_N \] Klemmkraft
\[F_R \] Reibkraft
\[F_T \] Trägheitskraft
\[K \] Anzahl der Kollektivdurcharäufe
\[M_b \] Biegemoment
\[N \] Axialkraft
\[N_D \] Knickpunktzyklenzahl der Wöhlerlinie
\[N_i \] Anzahl der ertragbaren Spannungsspiele für \(j_{\text{erf}} \geq \sigma_{ai} \)
\[N_{\text{Kran}} \] Anzahl der Spannungsspiele bei Kranhandhabung
\[R \] Spannungsverhältnis
\[R_{\text{mB}}(T_{\text{max}}) \] Zugfestigkeit des Schrauben-(Bolzen-)werkstoffs bei maximaler Betriebstemperatur
\[R_{\text{mM}}(T_{\text{max}}) \] Zugfestigkeit des Mutterwerkstoffs bei maximaler Betriebstemperatur
\[R_{\psi 0.2}(T_0) \] 0,2-% Dehngrenze bei Raumtemperatur
\[R_{\psi 0.2}(T_{\text{max}}) \] 0,2-% Dehngrenze bei maximaler Betriebstemperatur
\[S_D \] Sicherheitsbeiwert für die Dauerfestigkeit von Schrauben
\[T_0 \] Raumtemperatur bei Montage
\[T_{\text{max}} \] Maximale Betriebstemperatur
\[U \] Anzahl der Lastarbeitsspiele bei Kranhandhabung
\[W \] Widerstandsmoment der Schraube
\[W_K \] Widerstandsmoment unter der Kopfauflage
\[Y_0 \] Preßkraft (Linienlast), ab der bei erstmaliger Belastung im Verformungszyklus die geforderte Standard-Helium-Leckagerate unterschritten wird
\[Y_1 \] Preßkraft (Linienlast), oberhalb der im Entspannungszyklus die geforderte Standard-Helium-Leckagerate unterschritten bleibt
\[Y_2 \] Preßkraft (Linienlast) im optimalen Arbeitspunkt
\[Z_{\text{Sch}} \] Anzahl der Schaltungen bei Kranhandhabung
Verformung bei der Preßkraft (Linienlast) \(Y_0 \)
Verformung bei der Preßkraft (Linienlast) \(Y_1 \)
Optimaler Verformungsweg bei der Preßkraft (Linienlast) \(Y_2 \)
Verformung, ab der die Dichtung beschädigt werden kann
Rückverformungskennwert
Anzahl der Spannungsspiele für Stufe \(i \) (Stufenhäufigkeit) eines Spannungs-
kollektivs
Erforderlicher Sicherheitsbeiwert
Sicherheitsbeiwert nach KTA
Neigungsexponent der Wöhlerlinie
Anzahl der Spannungsspiele infolge einer Schaltung bei Kranhandhabung
Faktor zur Berücksichtigung der Torsionsspannung
Erforderliche Einschraubtiefe
Wirksame Einschraubtiefe
Gesamtzahl der Spannungsspiele für Stufe \(i \)
Grenzflächenpressung
Grenzflächenpressung bei maximaler Betriebstemperatur
Wirksame Flächenpressung
Hebelarm zum Bezugspunkt
Rückfederung
Abstand der Dichtflächen unter Belastung
Abstand der Dichtflächen im Montagezustand
Wärmeausdehnungskoeffizient
Plastischer Anteil der Vergleichsdehnung
Minimaler Reibungsbeiwert am Schraubenkopf
Maximaler Reibungsbeiwert am Schraubenkopf
Minimaler Reibungsbeiwert im Gewinde
Maximaler Reibungsbeiwert im Gewinde
Haftreibungsbeiwert in der Trennfuge
Normalspannung
Ausschlagsspannung der Stufe \(i \)
Dauerfestigkeit für schlußgewalzte Schrauben
Dauerfestigkeit für schlußvergütete Schrauben
Biegespannung
Maximale Biegespannung im Deckel
Mittlere logarithmische Standardabweichung
Mittelspannung der Stufe \(i \)
Oberspannung
Unterspannung
Vergleichsspannung nach Gestaltänderungsergiehypothese (von Mises Spannung)
Zugspannung
Zugspannung der Schraube im Montagezustand
Torsionsspannung durch das Anziehen der Schraube
Quellenverzeichnis

